Tangential limits of functions orthogonal to invariant subspaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Subspaces and Limits of Similarities

Let {Dn} be a sequence of bounded invertible operators on Hilbert space H. It is shown that the collection of operators T for which the norm-limit limDnTD n exists is an algebra. Furthermore, some sufficient conditions on this sequence are established for the corresponding algebra to have a nontrivial invariant subspace. By considering specific sequences of operators several invariant subspace ...

متن کامل

Characteristic Functions and Joint Invariant Subspaces

Let T := [T1, . . . , Tn] be an n-tuple of operators on a Hilbert space such that T is a completely non-coisometric row contraction. We establish the existence of a “one-toone” correspondence between the joint invariant subspaces under T1, . . . , Tn, and the regular factorizations of the characteristic function ΘT associated with T . In particular, we prove that there is a non-trivial joint in...

متن کامل

Smooth Functions in Star-invariant Subspaces

In this note we summarize some necessary and sufficient conditions for subspaces invariant with respect to the backward shift to contain smooth functions. We also discuss smoothness of moduli of functions in such subspaces.

متن کامل

Analytic Contractions, Nontangential Limits, and the Index of Invariant Subspaces

Let H be a Hilbert space of analytic functions on the open unit disc D such that the operator Mζ of multiplication with the identity function ζ defines a contraction operator. In terms of the reproducing kernel for H we will characterize the largest set ∆(H) ⊆ ∂D such that for each f, g ∈ H, g 6= 0 the meromorphic function f/g has nontangential limits a.e. on ∆(H). We will see that the question...

متن کامل

Convergence of Restarted Krylov Subspaces to Invariant Subspaces

The performance of Krylov subspace eigenvalue algorithms for large matrices can be measured by the angle between a desired invariant subspace and the Krylov subspace. We develop general bounds for this convergence that include the effects of polynomial restarting and impose no restrictions concerning the diagonalizability of the matrix or its degree of nonnormality. Associated with a desired se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1972

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1972-0293100-8